Off-Centered Distance Effect Study on Drag Polishing Process
Abstract
Surface polishing is one of the most conventional methods in the manufacturing process to reduce surface defects and friction of the workpiece. Drag polishing, which is used extensively for this aim, is one of the most well-known methods based on abrasive particles. Although this process is used extensively in the industry, it is problematic to identify the process parameters and their effects on the finished workpiece. In this work, the effect of the workpiece off-centering in the polishing container is studied using the discrete element model. In the first step, the numerical model is validated by the experimental result reported in the literature. Next, the effect of the workpiece position in the polishing container on the process attributes such as the kinematics of the particles and contact forces of the workpiece is surveyed, and the best position for maximum process efficiency is proposed.
Keywords
drag polishing, process parameter, discrete element model, numerical simulation,References
1. M. Givi, A.F. Tehrani, A. Mohammadi, Polishing of the aluminum sheets with magnetic abrasive finishing method, The International Journal of Advanced Manufacturing Technology, 61(9–12): 989–998, 2012, doi: 10.1007/s00170-011-3753-0.2. J. Zhang, A. Chaudhari, H. Wang, Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel, Journal of Manufacturing Processes, 45: 710–719, 2019, doi: 10.1016/j.jmapro.2019.07.044.
3. J. Kenda, J. Duhovnik, J. Tavcar, J. Kopac, Abrasive flow machining applied to plastic gear matrix polishing, The International Journal of Advanced Manufacturing Technology, 71(1–4): 141–151, 2014, doi: 10.1007/s00170-013-5461-4.
4. Z. Lv, C. Huang, H. Zhu, J.Wang, Y.Wang, P. Yao, A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials, The International Journal of Advanced Manufacturing Technology, 78(5–8): 1361–1369, 2015, doi: 10.1007/s00170-014-6528-6.
5. T. Yu, Z. Wang, X. Guo, P. Xu, J. Zhao, L. Chen, Effect of ultrasonic vibration on polishing monocrystalline silicon: surface quality and material removal rate, The International Journal of Advanced Manufacturing Technology, 103(5–8): 2109–2119, 2019.
6. J. Zhao, J. Huang, R. Wang, H. Peng, W. Hang, S. Ji, Investigation of the optimal parameters for the surface finish of K9 optical glass using a soft abrasive rotary flow polishing process, Journal of Manufacturing Processes, 49: 26–34, 2020, doi: 10.1016/j.jmapro.2019.11.011.
7. D. Ciampini, M. Papini, J.K. Spelt, Impact velocity measurement of media in a vibratory finisher, Journal of Materials Processing Technology, 183(2–3): 347–357, 2007, doi: 10.1016/j.jmatprotec.2006.10.024.
8. L. Canals, J. Badreddine, B. McGillivray, H.Y. Miao, M. Levesque, Effect of vibratory peening on the sub-surface layer of aerospace materials Ti-6Al-4V and E-16NiCrMo13, Journal of Materials Processing Technology, 264: 91–106, 2019, doi: 10.1016/j.jmatprotec.2018.08.023.
9. L. da Silva Maciel, J.K. Spelt, Measurements of wall-media contact forces and work in a vibratory finisher, Powder Technology, 360: 911–920, 2020, doi: 10.1016/j.powtec.2019.10.066.
10. E. Uhlmann, A. Eulitz, A. Dethlefs, Discrete element modelling of drag finishing, Procedia CIRP, 31: 369–374, 2015, doi: 10.1016/j.procir.2015.03.021.
11. E. Uhlmann, A. Dethlefs, A. Eulitz, Investigation of material removal and surface topography formation in vibratory finishing, Procedia CIRP, 14: 25–30, 2014, doi: 10.1016/j.procir.2014.03.048.
12. F. Hashimoto, S.P. Johnson, Modeling of vibratory finishing machines, CIRP Annals, 64(1): 345–348, 2015, doi: 10.1016/j.cirp.2015.04.004.
13. Y.S. Kang, F. Hashimoto, S.P. Johnson, J.P. Rhodes, Discrete element modeling of 3D media motion in vibratory finishing process, CIRP Annals, 66(1): 313–316, 2017, doi: 10.1016/j.cirp.2017.04.092.
14. W. Li, L. Zhang, X. Li, S. Yang, F. Wu, Theoretical and simulation analysis of abrasive particles in centrifugal barrel finishing: kinematics mechanism and distribution characteristics, Powder Technology, 318: 518–527, 2017, doi: 10.1016/j.powtec.2017.06.033.
15. H. Qi, S. Qin, Z. Cheng, Y. Zou, D. Cai, D. Wen, DEM and experimental study on the ultrasonic vibration-assisted abrasive finishing of WC-8Co cemented carbide cutting edge, Powder Technology, 378(Part A): 716–723, 2021, doi: 10.1016/j.powtec.2020.10.043.
16. S. Beigmoradi, M. Vahdati, Experimental and numerical study of polishing of 2024 aluminum alloy using acoustics energy, Journal of Manufacturing Processes, 73: 440–453, 2022, doi: 10.1016/j.jmapro.2021.11.009.
17. S. Beigmoradi, M. Vahdati, Surface roughness study of polyamide in nano-metric polishing using low-frequency acoustic energy, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, [in print], 2021, doi: 10.1177/09544054211057375.
18. S. Beigmoradi, M. Vahdati, Investigation of vibratory bed effect on abrasive drag finishing: a DEM study, World Journal of Engineering, [in print], 2021, doi: 10.1108/WJE-03-2021-0171.
19. P. Sutowski, J. Plichta, P. Kałdunski, Determining kinetic energy distribution of the working medium in a centrifugal disc finishing process – part 1: theoretical and numerical analysis with DEM method, The International Journal of Advanced Manufacturing Technology, 104(1): 1345–1355, 2019, doi: 10.1007/s00170-019-03872-2.
20. P. Sutowski, J. Plichta, P. Kałdunski, Determining kinetic energy distribution of the working medium in a centrifugal disc finishing process – part 2: experimental analysis with the use of acoustic emission signal, The International Journal of Advanced Manufacturing Technology, 104(1): 687–704, 2019, doi: 10.1007/s00170-019-03937-2.
21. B. Mullany, H. Shahinian, J. Navare, F. Azimi, E. Fleischhauer, P. Tkacik, R. Keanini, The application of computational fluid dynamics to vibratory finishing processes, CIRP Annals, 66(1): 309–312, 2017, doi: 10.1016/j.cirp.2017.04.087.
22. C.H. Song, S.C. Yang, Dynamic simulation and analysis of centrifugal barrel surface finishing based on 3D discrete element method, Key Engineering Materials, 407-408: 432–435, 2009, doi: 10.4028/www.scientific.net/kem.407-408.432.
23. C.H. Song, S.C. Yang, Dynamics model research of centrifugal barrel surface finishing based on 3D discrete element method, Key Engineering Materials, 416: 127–132, 2009, doi: 10.4028/www.scientific.net/kem.416.127.
24. L. Zhang, W.H. Li, S.Q. Young, X.H. Li, The speed optimization analysis of DEM simulation in barrel polishing process, Machinery Design & Manufacture, 2: 153–156, 2016.
25. H. Hertz, Über die Berührung fester elastischer Körper, Journal für die Reine und Angewandte Mathematik, 92: 156–171, 1882.
26. R.D. Mindlin, Compliance of elastic bodies in contact, Journal of Applied Mechanics, 16(3): 259–268, 1949, doi: 10.1115/1.4009973.
27. R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique force, ASME, Journal of Applied Mechanics, 20(3): 327–344, 1953, doi: 10.1115/1.4010702.
28. Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technology, 71(3): 239–250, 1992, doi: 10.1016/0032-5910(92)88030-L.
29. P.A. Cundall, O.D.L. Strack , A discrete numerical model for granular assembles, Géotechnique, 29(1): 47–65, 1979, doi: 10.1680/geot.1979.29.1.47.
30. H. Sakaguchi, E. Ozaki, T. Igarashi, Plugging of the flow of granular materials during the discharge from a silo, International Journal of Modern Physics B, 7(9–10): 1949–1963, 1993, doi: 10.1142/S0217979293002705.
31. M. Johnstone, Calibration of DEM models for granular materials using bulk physical tests, DPhil. Dissertation, The University of Edinburgh, Edinburgh, 2010.