Identification of aerodynamic coefficients of a projectile and reconstruction of its trajectory from partial flight data
Abstract
Several optimization techniques are proposed both to identify the aerodynamic coefficients and to reconstruct the trajectory of a fin-stabilized projectile from partial flight data. A reduced ballistic model is used instead of a more general six degree of freedom (6DOF) ballistic model to represent the flight of the projectile. Optimization techniques are proposed in order to identify the set of aerodynamic coefficients. These techniques are compared when identifying the aerodynamic coefficients from both exact and noisy simulated partial flight data.
Keywords
aerodynamic coefficients, identification, free flight data, regularization,References
[1] B.T. Burchett. Aerodynamic parameter identification for symmetric projectiles: an improved gradient based method. Aerospace Science and Technology, 30(1): 119–127, 2013.[2] P. Champigny, D. Ceroni, R. Thépot, R. Cayzac, E. Carette, C. Trouillot, O. Donneaud. Recent developments on aeroballistics of yawing and spinning projectiles: part I – wind tunnel tests. In Proceedings of 20th International Symposium on Ballistics, pp. 203–208, 2002.
[3] A. Cimetière, F. Delvare, M. Jaoua, F Pons. Solution of the Cauchy problem using iterated Tikhonov regularization. Inverse Problems, 17(3): 553–570, 2001.
[4] F. Delvare, A. Cimetière, J.L. Hanus, P. Bailly. An iterative method for the Cauchy problem in linear elasticity with fading regularization effect. Comput. Methods Appl. Mech. Engrg., 199(49–52): 3336–3344, 2010.
[5] H. Demailly, F. Delvare, C. Grignon, S. Heddadj, P. Bailly. Identification of aerodynamic coefficients of a kinetic energy projectile from flight data. Inverse Problems in Science and Engineering, 21(1): 63–83, 2013.
[6] G.G. Dutta, A. Singhal, A. Ghosh. Estimation of drag Coefficient from flight data of a cargo shell. Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics, August 2006. DOI: 10.2514/6.2006-6149.
[7] Z.S. Kuo, H.Y. Huang. Parameter identification of spin-stabilized projectiles using a modified Newton-Raphson minimization technique. Transactions of the Japan Society for Aeronautical and Space Sciences, 43(140): 88–95, 2000.
[8] R.F. Lieske, M.L. Reiter. Equations of motion for a modified point mass trajectory. Technical Report No. 1314, Ballistic Research Laboratories, March 1966.
[9] C. Montalvo, M. Costello. Estimation of projectile aerodynamic coefficients using coupled CFD/RBD simulation results. Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics, August 2010. DOI: 10.2514/6.2010-8249.
[10] J. Quanwei, C. Qiongkang. Dynamic model for real-time estimation of aerodynamic characteristics. Journal of aircraft, 26(4): 315–321, 1989.
Published
Jan 25, 2017
How to Cite
CONDAMINET, Vincent et al.
Identification of aerodynamic coefficients of a projectile and reconstruction of its trajectory from partial flight data.
Computer Assisted Methods in Engineering and Science, [S.l.], v. 21, n. 3-4, p. 177-186, jan. 2017.
ISSN 2956-5839.
Available at: <https://cames.ippt.gov.pl/index.php/cames/article/view/36>. Date accessed: 18 apr. 2025.
doi: http://dx.doi.org/10.24423/cames.36.
Issue
Section
Articles