Minimum weight design of vertically vibrating 3-D machine foundation coupled to layered half-space 1
Abstract
Dynamic optimization problem for a machine rigid block foundation on an inhomogeneous soil is considered. The soil deposit under the base of block corresponds to a layer with linearly varying properties overlying a uniform half-space. Furthermore, the block may be surrounded by a backfill. The optimal designs of a vertically excited rectangular block foundation are found by iterative application of a sequential linear programming for a number of rationally inhomogeneous supporting media as well as for a uniform half-space. It illustrates the problem of adequate modelling of the nature of the soil profile and provides an insight into the action of the soil-foundation-machine system from the point of view of the long-term satisfactory performance and safety.
Keywords
References
[1] J-F.M. Barthelemy, R .T. Haftka. Approximation concepts for optimum structural design-a review, Structural. Optimization, 5: 129-144, 199:3.[2] J. Best, K. Ritter. Linear Progmmming. Prentice-Hall Englewood Cliffs, New York, 1985.
[3] A.M. Brandt et al. Foundations of Optimum Design in Civil Engineering. PWN, Warszawa, Martinaus Nijhoff Publishers, Dordrecht, 1989.
[4]] T.-Y. Chen. Calculation of the move limits for the sequential linear programming method. Int. Jnl Num. Meth. Engrg, 36: 2661- 2679, 199:3.
[5] T. Chi, E. Dembicki. Optimization of the block foundations. Computer Assisted Mechanics and Engineering Sciences, 4: 243- 255, 1997.
This work is licensed under a Creative Commons Attribution 4.0 International License.