The Impact of Point Cloud Simplification on the Accuracy of the Viewshed

Downloads

Authors

  • Jerzy Orlof Faculty of Computer Science and Telecommunications, Cracow University of Technology, Kraków, Poland ORCID ID 0000-0002-2069-2126
  • Adrian Widłak Faculty of Computer Science and Telecommunications, Cracow University of Technology, Kraków, Poland ORCID ID 0000-0001-9256-0061

Abstract

Contemporary visibility analyses, particularly relevant in environmental and landscape studies, require the processing of very large datasets derived from point clouds. While such data provide high accuracy, they also involve substantial computational demands and long processing times, which limit their practical applicability. This article presents a detailed analysis of the impact of point cloud simplification on the accuracy of viewshed. The viewshed diagrams were generated using the ray tracing method, and the analysis included an evaluation of discrepancies between results obtained from simplified datasets and reference outcomes based on the complete, unprocessed dataset. In addition, the computation time required to generate viewshed under different levels of simplification was investigated. The findings made it possible to identify the maximum acceptable levels of simplification as well as the potential computational gains in terms of the number of processed points. The results demonstrate that properly selected simplification levels can significantly enhance the efficiency of ray tracing-based visibility analyses while preserving their practical reliability.

Keywords:

visibility analysis, viewshed, point cloud, geometric accuracy, 3D data processing, spatial analysis

References



  1. Orlof J., Point cloud based viewshed generation in AutoCad Civil 3D, Technical Transactions, 12: 143–155, 2017, https://doi.org/10.4467/2353737XCT.17.215.7758


  2. Ozimek A., Ozimek P., Bohm A., Wańkowicz W., Planowanie przestrzeni o wysokich walorach krajobrazowych przy użyciu cyfrowych analiz terenu wraz z oceną ekonomiczną, Wydawnictwo PK, 2013.


  3. Orlof J., Chmura punktow – nowa struktura danych, Aura, 12: 3–6, 2017.


  4. Orlof J., Ozimek P., Tin surface and radial viewshed determination algorithm parallelization on multiple computing machines, Symmetry, 13(3): 424, 2021, https://doi.org/10.3390/sym13030424


  5. Widłak A., Orlof J., Ray tracing and bound block elimination methods for viewshed analysis with efficiency enhancements through radial segmentation and parallel processing, [In:] Proceedings of the 39th European Conference on Modelling and Simulation (ECMS 2025), European Council for Modelling and Simulation, pp. 631–637, 2025, https://doi.org/10.7148/2025-0631


  6. Rubinowicz P., Sustainable development of a cityscape using the visual protection surface method – optimization of parameters for urban planning, [In:] D. Holzer, W. Nakapan, A. Globa, I. Koh [Eds.], RE: Anthropocene, Design in the Age of Humans – Proceedings of the 25th CAADRIA Conference – Volume 1, Chulalongkorn University, Bangkok, Thailand, 5–6 August, pp. 863–872, 2020, https://doi.org/10.52842/conf.caadria.2020.1.863


  7. Lv C., Lin W., Zhao B., Approximate intrinsic voxel structure for point cloud simplification, IEEE Transactions on Image Processing, 30: 7241–7255, 2021, https://doi.org/10.1109/TIP.2021.3104174


  8. Moenning C., Dodgson N.A., A new point cloud simplification algorithm, [In:] Proceedings of the 3rd International Conference on Visualization, Imaging and Image Processing (VIIP 2003), Benalmadena, Spain, 8–10 September, pp. 1027–1033, 2003.


  9. Ding Z., Li R., Point cloud reduction method based on curvature grading and voxel filtering, Journal of Electrical Systems, 20(2): 318–326, 2024, https://doi.org/10.52783/jes.1180


  10. Wu T., Yang F., Farooq U., Hao H., Li Y., Diao G., A new point cloud simplification method for reducing visual distortion, Measurement, 229: 114400, 2024, https://doi.org/10.1016/j.measurement.2024.114400


  11. Wang S. et al., A new point cloud simplification method with feature and integrity preservation by partition strategy, Measurement, 197: 111173, 2022, https://doi.org/10.1016/j.measurement.2022.111173


  12. Geoportal Krajowy, available online https://mapy.geoportal.gov.pl/imap/Imgp 2.html [accessed: 07.09.2025].


  13. Zhou Q., Digital elevation model and digital surface model, [In:] International Encyclopedia of Geography: People, the Earth, Environment and Technology, D. Richardson,


  14. Castree, M.F. Goodchild, A. Kobayashi, W. Liu, R.A. Marston [Eds.], pp. 1–17, 2017, https://doi.org/10.1002/9781118786352.wbieg0768


  15. Kurczyński Z., Bakuła K., Generowanie referencyjnego numerycznego modelu terenu o zasięgu krajowym w oparciu o lotnicze skanowanie laserowe w projekcie ISOK, Archiwum Fotogrametrii, Kartografii i Teledetekcji, Techniki Pomiarowe, 23: 59–68, 2013.


  16. Negishi J.N. et al., Using airborne scanning laser altimetry (LiDAR) to estimate surface connectivity of floodplain water bodies, River Research and Applications, 28(2): 258–267, 2010, https://doi.org/10.1002/rra.1442


  17. Gao X., Chang Z., Ma C., Qu M., Zhang S., Xiao F., Accuracy comparison and analysis of interpolation methods in DEM generation with 3D laser point cloud data, [In:] Proceedings of the International Conference on Remote Sensing, Mapping, and Geographic Systems (RSMG 2023), Kaifeng, China, Vol. 12815, 128150C, 2023, https://doi.org/10.1117/12.3010326


  18. Zhang H. et al., Deep learning-based 3D point cloud classification: A systematic survey and outlook, Displays, 79: 102456, 2023, https://doi.org/10.1016/j.displa.2023.102456


  19. ASPRS, LAS Specification, The American Society for Photogrammetry & Remote Sensing, Baton Rouge, LA, 2019.


  20. Tandy C.R.V., The isovist method of landscape survey, [In:] Methods of Landscape Analysis, H.C. Murray [Ed.], Landscape Research Group, pp. 9–10, London, 1967.


  21. Benedikt M.L., To take hold of space: Isovists and isovist field, Environment and Planning B, 6(1): 47–65, 1979, https://doi.org/10.1068/b060047


  22. Moenning C., Dodgson N., Intrinsic point cloud simplification, [In:] Proceedings of the 14th GrahiCon, Moscow, Russia, 6–10 September, Vol. 14, 8 pages, 2004.


  23. Petras V., Petrasova A., McCarter J.B., Mitasova H., Meentemeyer R.K., Point density variations in airborne lidar point clouds, Sensors, 23(3): 1593, 2023, https://doi.org/10.3390/s23031593