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Advances in high-content microscopy and artificial intelligence (AI) are transforming the
quantitative study of infection biology. Automated imaging platforms now enable rapid,
large-scale acquisition of host-pathogen interactions across thousands of cells and mul-
tiple experimental conditions. When combined with AI-based segmentation, these work-
flows extract infection-relevant features such as pathogen load, intracellular localization,
and host response markers at single-cell resolution. Deep-learning models have proven es-
pecially powerful, outperforming classical threshold-based methods under different imag-
ing conditions, reducing reliance on manual annotation, and detecting rare infection out-
comes. Beyond robust image analysis, these approaches generate scalable and reproducible
datasets that can be integrated with computational modelling and systems biology, pro-
viding predictive insight into infection dynamics. This review highlights recent progress in
AI-assisted microscopy for bacterial infection and outlines future directions toward mul-
timodal integration, clinical translation, and open-source tool development.
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1. Introduction

The study of host-pathogen interactions has been revolutionized by mi-
croscopy. From early fluorescence imaging of infected cells to the development
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of automated high-content systems, infection biology has increasingly relied
on quantitative visualization [12, 23, 40, 43]. Yet, traditional manual annota-
tion and threshold-based image analysis [33] remain limiting. They are labour-
intensive, prone to operator bias, and can be poorly scalable when dealing with
tens of thousands of cells across multiple infection conditions [8, 29].
Artificial intelligence (AI), particularly deep learning (DL), a class of al-

gorithms based on multi-layered neural networks capable of automatically ex-
tracting complex patterns from large datasets, now provides transformative
solutions [27, 31, 44]. By combining automated high-content imaging with ad-
vanced image analysis workflows, researchers can extract infection-relevant fea-
tures, including pathogen load, subcellular localization, and host cell responses
at single-cell resolution and across entire experiments [19, 28]. Important-
ly, AI-based models outperform classical approaches under diverse imaging
conditions, reduce the need for manual annotation, and enable detection of rare
infection outcomes [14, 20, 39]. This review highlights recent advances in
AI-assisted microscopy for bacterial infection biology, building on pioneering
work in host–pathogen imaging and linking these efforts to broader computa-
tional sciences (Fig. 1 and Table 1).

Fig. 1. Workflow of AI-assisted microscopy for infection biology. High-content microscopy
generates thousands of multi-channel images from infected cells. AI-based segmentation
(e.g., CNNs, Omnipose, DeepBacs) identifies host nuclei, cytoplasm, and intracellular bac-
teria. Single-cell feature extraction quantifies pathogen load, localization, and host responses.
Integrated features reveal infection heterogeneity and can inform computational models of in-

fection dynamics.
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2. High-content microscopy in infection research

Automated microscopy platforms enable systematic acquisition of hundreds
of fields or entire multi-well plates in minutes, capturing tens of thousands of
host and pathogen cells. Importantly, these systems also support longitudinal
live-cell assays, allowing researchers to track infection trajectories and cell fate
decisions in real time. Such time-resolved imaging is particularly powerful for
studying dynamic host responses, pathogen replication, and the heterogeneity
of host-pathogen interactions across individual cells [7]. Illustrating these appli-
cations, Batani et al. [4] developed a high-content adhesion/invasion inhibition
assay to assess the functionality of Shigella-specific antibodies, showing how au-
tomated imaging can quantify pathogen adhesion and host cell entry in a repro-
ducible and scalable fashion [4]. Similarly, high-throughput screens have been
applied to bacterial and viral pathogens to capture phenotypic diversity and
responses to treatment, in a more physiological context [24, 30, 45]. Beyond in-
fection biology, such platforms have also been central to cell profiling and drug
discovery, underscoring their versatility and robustness [8].
Raw image acquisition is only the first step of the analysis pipeline. Infection

biology presents unique computational challenges: bacterial morphologies vary
widely, host cells exhibit diverse responses, and infections are heterogeneous
both across and within populations [7]. Classical image analysis approaches,
often based on local and global intensity thresholding and handcrafted mor-
phological features can struggle with such complexity [33, 37]. These limitations
call for robust, generalizable image analysis strategies, precisely the areas where
AI-based methods excel [44].

3. AI-driven image segmentation and feature extraction

Classical image analysis pipelines long served as the workhorse of infec-
tion microscopy, relying on combinations of intensity thresholds, handcrafted
filters, and morphological operations to segment host cells and detect intra-
cellular pathogens [12, 23, 29, 33, 37]. While these approaches proved effective
in controlled imaging conditions and remain widely used in platforms such as
ImageJ and CellProfiler, their performance can suffer in the face of biological
heterogeneity. Individual bacteria may be small, dim, or clustered near host
structures or inside different host cell compartments, while host cells themselves
vary greatly in size, shape, and fluorescence signal. Under such conditions, rule-
based methods tend to misclassify pixels, merge or split objects incorrectly,
requiring extensive manual parameter tuning.
DL models have demonstrated substantial improvements in robustness and

accuracy by overcoming these constraints. Instead of relying on fixed rules,
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DL architectures such as convolutional neural networks (CNNs) learn hierar-
chical features directly from training data, making them resilient to imaging
variability. Early proof-of-concept work by Fisch et al. [19] showed how CNNs-
enabled HRMAn (Host Response to Microbe Analysis) could simultaneously
detect bacteria and host compartments in complex infection images as well as
recognize, classify and quantify pathogen killing, replication and cellular defence
responses, without relying on researcher-based assumptions, paving the way for
more generalizable approaches. Building on this foundation, Spahn et al. [39] in-
troduced DeepBacs, an open-source multi-task DL pipeline capable of bacterial
segmentation and phenotyping across diverse datasets, while Cutler et al. [14]
developed Omnipose, a morphology-independent segmentation tool that ex-
cels in recognizing bacteria of varying shapes, including filamentous or irreg-
ular forms where traditional algorithms often fail. Complementing these tools,
Fisch et al. [20] released HRMAn 2.0, a generalizable AI-driven analysis plat-
form for broad host-pathogen interactions, supporting multiple host cell types
and pathogens like Toxoplasma gondii, Chlamydia trachomatis and the fungal
Cryptococcus neoformans. More recently, López-Jiménez et al. [28] combined
high-resolution microscopy with DL to reveal heterogeneity during Shigella in-
fection, identifying subpopulations of both bacteria and host cells that would
be undetectable by manual annotation.
AI algorithms and pipelines continue to be refined, including methods that

enhance image resolution through post-processing, making it possible to ex-
tract quantitative data even from lower-cost microscopes [1, 34, 35, 42]. In recent
years, several open-source Python packages have also emerged to simplify bac-
terial segmentation, tracking, analysis, and visualization within unified, script-
able interfaces. Examples include da Tracker [2], a near-automated workflow for
high-throughput cell and phagosome tracking, and RABiTPy [38], which offers
a fully integrated pipeline for bacterial tracking and analysis. A notable devel-
opment is the integration of AI directly into modern imaging platforms. Confocal
and high-content systems now embed modules for autofocus, denoising, deblur-
ring, and even real-time segmentation [10, 17, 36]. These “smart microscopes”
open the door to adaptive acquisition, where instruments dynamically adjust
scanning to capture rare infection events or resolve subtle intracellular features.
Together, these advances demonstrate how AI pipelines are evolving from

task-specific solutions toward flexible, general-purpose frameworks and “smart
microscopes” for host-pathogen imaging.

4. Quantifying infection heterogeneity at single-cell resolution

While high-content microscopy and AI pipelines enable large-scale and ac-
curate segmentation, the real power of these approaches lies in their ability to
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resolve infection heterogeneity at the single-cell level. Infection outcomes are
not uniform: within the same population of genetically-identical cells, some may
resist invasion, others may clear intracellular bacteria, while another fraction
supports extensive pathogen replication leading to cell death or, in some cases,
persistence [3, 11, 15, 18, 22, 26, 32, 41]. Capturing this spectrum of outcomes is
crucial for understanding infection dynamics and host susceptibility [6].
Quantitative image analysis has already demonstrated its value in this con-

text. For example, Voznica et al. [45] used image analysis and modelling to
investigate host epithelium susceptibility to Salmonella infection. Their work
demonstrated that single-cell phenotypic features of host cells, namely mor-
phology, local crowding and cholesterol signalling may predict infection prob-
ability. Similarly, López-Jiménez et al. [28] highlighted how DL can capture
both bacterial and host heterogeneity during Shigella infection, linking diver-
gent outcomes to DNA and protein synthesis, host morphological changes, and
type III secretion system activity in bacteria, thereby resolving infection trajec-
tories at an unprecedented scale. More broadly, AI approaches have enabled the
identification of rare events such as failed invasion attempts or rapid bacterial
clearance, events often overlooked in bulk analyses but critical for understanding
protective immunity [7]. By moving from bulk averages to single-cell resolution,
AI-driven microscopy turns heterogeneity into a quantifiable feature, bridging
infection biology with predictive modelling and systems-level understanding of
host–pathogen dynamics.

5. Integration with computational modelling and systems biology

AI-assisted image analysis generates rich, quantitative datasets describing
pathogen load, spatial localization, host cell state, and infection trajectories.
The next frontier is to integrate these phenotypic measurements with mathe-
matical and computational models. Such integration enables the formulation of
predictive frameworks that go beyond descriptive imaging, providing mechanis-
tic insight into infection dynamics.
Single-cell features derived from imaging can inform agent-based or statisti-

cal models of infection spread, allowing predictions of how outcomes shift under
different host or bacterial genotypes. Similarly, imaging-derived parameters such
as intracellular bacterial growth rates or clearance probabilities can be incorpo-
rated into dynamical systems models to test hypotheses about immune control
or pathogen evasion strategies [21]. Caicedo et al. [8] outlined general strategies
for image-based cell profiling, many of which can be directly adapted to the
infection context.
Recent advances in multimodal single-cell analysis also provide opportunities

for integration. AI-driven microscopy could be combined with transcriptomics
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or proteomics [44], bridging phenotypic imaging with molecular profiling and
linking cell states to underlying gene regulatory or metabolic networks. For in-
stance, imaging mass cytometry has been used to integrate spatial proteomics
with clinical phenotypes at single-cell resolution [25]. Spatial transcriptomics
approaches, such as seqFISH and MERFISH, provide complementary maps of
gene expression that can be correlated with infection phenotypes observed by mi-
croscopy [16, 46]. In addition, AI-assisted pipelines have begun linking live-cell
imaging with single-cell RNA-seq, enabling direct connections between observed
cellular behaviours and underlying transcriptional programs [9]. Together, these
integrative strategies highlight how microscopy-derived phenotypes can be con-
textualized within broader molecular landscapes, advancing systems-level un-
derstanding of host–pathogen interactions.
Applications in infectious disease research illustrate the potential of this

approach. In tuberculosis, deep learning models have been developed for auto-
mated CT analysis, predicting lesion dynamics and treatment outcomes, while
highlighting challenges of generalization, interpretability, and clinical valida-
tion [47]. Another study showed how the maximum cross-sectional area of lesions
on CT could predict early therapeutic response in multidrug-resistant tubercu-
losis (MDR-TB), demonstrating how imaging-derived metrics can guide clinical
decisions [48]. Integrative efforts are also expanding in microscopy methodology
itself. Bilodeau et al. [5] presented pySTED, a simulation platform for super-
resolution microscopy that incorporates validated models for photobleaching,
point spread function, scanning dynamics, and structural realism. By generating
realistic synthetic data, pySTED facilitates data augmentation, benchmarking,
and reinforcement learning approaches.
Together, these cross-cutting efforts highlight how linking AI-based micros-

copy with systems-level models can transform infection biology, enabling pre-
dictive frameworks where cell-level measurements inform population-scale and
clinical outcomes.

6. Outlook and conclusions

AI-assisted microscopy has rapidly advanced the field of infection biology,
but several challenges remain. Training deep learning models still requires large,
annotated datasets, which are often lacking for rare pathogens or specialized
assays. Strategies such as transfer learning and synthetic data generation may
help overcome this barrier [31]. Interpretability is another frontier: while CNNs
excel at segmentation and feature extraction, linking features to mechanistic
biological insight remains difficult. Hybrid approaches that couple AI-driven
image analysis with mathematical infection models may provide a powerful route
to prediction and explanation [45].
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Looking ahead, future progress will depend on making AI pipelines more
adaptable across pathogens, cell types, and imaging conditions, while reduc-
ing the need for retraining. Integration with multimodal single-cell omics offers
the chance to link infection phenotypes with transcriptional, proteomic, and
epigenetic states, providing richer insight into host–pathogen interactions. Clin-
ical applications are another frontier, with clear potential in diagnostics, drug
screening, and vaccine testing. At the same time, the expansion of open-source
toolkits like DeepBacs and Omnipose, coupled with curated infection imaging
datasets, will be critical for accelerating adoption and ensuring reproducibility.
By bridging microscopy with computational intelligence, infection biology is

entering a new era of scalability, reproducibility, and predictive power. AI-driven
approaches not only resolve the heterogeneity of infection outcomes at single-cell
resolution but also generate quantitative datasets ideally suited for systems-level
modelling. In this way, infection biology finds a place within the broader land-
scape of computational sciences, offering both a demanding test case and a fertile
application domain. The convergence of AI, high-content microscopy, and sys-
tems biology holds strong promise for transformative discoveries in infection
research and beyond, particularly as emerging “smart microscopes” begin to
integrate AI modules directly into acquisition workflows. Extending these capa-
bilities from general imaging tasks to pathogen-specific contexts could further
accelerate discovery.
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